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Abstract. A theory based on a density-functional formalism is developed to obtain the 
solvent-induced potential between different sites on a polymer. The expression found for 
the potential surface is not pair decomposable. The theory brings to light a new approach 
for deriving solute-solvent correlation functions and computation of multipoint correlation 
functions in fluids. 

The solvent-mediated interactions between solutes are well known to be of fundamental 
importance in the formation and stability of structures involving biopolymers [ 1,2]  
and for an  understanding of the coil-globule transition [3] in polymer solutions. 
However, despite the substantial advances which have been made in the theory of 
liquids and  solutions in recent years [4] the details of the solvent-mediated forces 
between solutes at short range remain poorly resolved. The reason for this is simply 
related to the difficulty produced by the problems. Computer simulation involves an  
enormous computational investment [5] since, in a rough sense, even at infinite dilu- 
tion each solute-solute separation corresponds to a separate simulation study of the 
magnitude of a single solute in solution. On the other hand, the theory of liquids has 
not yet developed to the extent that it can be reliably applied for quantitative results 
to polymer problems. 

In this paper we develop a theory based on a density-functional formalism to obtain 
the solvent-induced potential surface for site-site (or monomer-monomer) interactions. 
The density-functional formalism is conceptually simple, containing as few independent 
approximations as appears presently feasible. It requires as input the solute-solvent 
direct pair correlation function as a function of number density and  temperature. 
Therefore the theory must also give a method to compute the solute-solvent correlations. 

Let the total free energy of a combined system of a polymer with P interaction 
sites constrained to the configuration ( r i l l ,  r i z )  ) . . . . ,  - { r i m ' }  and the one- 
component solvent in volume V be written as 

(1) 
where PA'[p,(r)]  is the reduced free energy of the solvent having the single-particle 
density distribution p,( r )  and P - '  is the Boltzmann constant times temperature. 
&A6{r'"'} is the reduced free energy of an unperturbed polymer of constrained configur- 
ation given by { r i m ' >  and P A P  ( [ p s ( r ) ] ,  {r im'} )  is the reduced excess free energy arising 
due to interactions between the solvent molecules and the polymer of given structure 
{ d o ) } .  /3Ap is a functional of both p,(r)  and the polymer structure. These functional 
dependences are indicated, respectively, by square and curly brackets. Here for the 

r(  PI = 

PA{r'" '1 = PA'[p,( r ) l  + PAo"{ri" '1 + P A P  ([pi( r ) l ,  {r'" '1) 
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sake of simplicity we have assumed that each solvent molecule has one interaction 
site. Generalisation to many interaction sites and to a multicomponent solvent [ 6 ]  is 
straightforward. 

If we assume that, in the absence of the polymer, the solvent is a uniform system 
with the density distribution p ,  , a constant independent of position, then the external 
potential responsible for creating the non-uniformity Aps( r )  = p, (  r )  - p s  in the density 
distribution of the solvent is 

This external field is produced by the polymer and is therefore a functional of the 
structure of the polymer in addition to p , ( r ) .  The solute-solvent direct pair correlation 
function is defined in [7] 

where pa (r’) is the density distribution of a site a in the polymer. For the constrained 
polymer 

p,(r)= 8 ( r - d U ) ) .  (4) 
Though not explicitly written, the functional dependence of 4,, cu, and  P A P  on p,( r )  
and the polymer structure should be kept in mind. The functional integration of (3) 
yields 

where 

Eas(r, r’) = lo1 dh  c,,(r, r’; hp, ) .  

The solvent-mediated external field acting on the site of the polymer is 

Since PAk vanishes at  zero polymer density we have, from functional integration of ( 6 ) ,  

where 

and  4, is a functional of both the solvent density and  the polymer structure. 

p s ,  leads to 
The functional Taylor expansion of ( 7 )  about the uniform density of the solvent, 
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where 

Here $,(r, p, )  is the potential field exerted at site a in the polymer by the uniform 
solvent. cos is the solute-solvent direct pair correlation function. For an isolated 
system, c,, defined by (3) and (10) are identical. 

From the linear response theory one obtains 

= 5 I dr’ I dr”X,,(r, r’)&(r’, r”)p,(r”). 
‘ I = 1  

Here use has been made of (5). xSs is the density-density correlation function of the 
uniform solvent, i.e. 

= p,6( r - r ’ )  + p:h,,( r, r’) (12) 

where hss( r )  is the total pair correlation function of the uniform solvent. The solvent- 
mediated field at dm)  due to a uniform fluid of density p, is obtained by functional 
integration of (10) and (8), i.e. 

Combining (9), ( I l ) ,  (13) and (14) we get the following expression for the solvent- 
induced energy surface for a constrained polymer of configuration { de)}: 

-flAp{r(a)}= p, I dr  Io1 dX ;,,(I-, de’; p,)-f u(riLI), r“)) 
n = l  a # v = l  

(14) 

with 

u(r(=’, r‘“)) = - d r  dr‘ ta,(r(*), r)xss(r, r’);,Jr’, r ‘ “ ) ) .  (15) J I  
A factor o f f  is included here to avoid counting the same pair twice. 

Our derivation clearly indicates that the function c,, which appears in (15) is a 
functional of the polymer structure. Because of this the solvent-generated potential 
surfaces are not pair decomposable. This complexity seems central to the physics of 
the system. Indeed, consider the polymer in a tangled configuration for which the 
interior portion is shielded from the solvent by the exterior. The reversible work 
associated with moving a pair of monomers buried within the interior is clearly different 
than would be found when the polymer is untangled and the pair is exposed to the 
solvent. This fact implies that the potential of mean force associated with a pair of 
momoners in the polymer depends upon the configuration of many other monomers. 
I t  seems therefore, that in an essential way, PAp{r‘“’} cannot be pair decomposable. 
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In  order to obtain an integral equation for solute-solvent correlation functions we 
generalise the method of Percus [8]. Let a site (Y of the polymer be localised at r',). 
The change induced in the density distribution of the solvent due to the polymer in 
linear response theory (see ( 1  1)) is 

SP,[ r'/ U,,( *( r')I 

= 5 J dr" J dr"',yxl(r', r'')tqS(r'', r'"')Sp,[r"'/+,,(r'(~', r',])]. (16) 

Here U,, indicates the pair interaction between a site of the polymer and a solvent 
molecule and I$,, the site-site interaction. 

The basis of the Percus method is the interaction of the quantity p(1+ h ( r ) )  as the 
local number density at a distance r from the origin, i.e. one particle of the system is 
known to be located at the origin, i.e. p ( r /4( r ,  0)) = p [  1 + h(r, O)] where +(r, 0) is the 
pair potential. The extension of this interpretation of our problem leads to 

, = I  

Sp5[r'/u,s(r(ol), r')] = pshas(r(nJ,  r') (17)  

and 

where w,, is the intrapolymer pair correlation: 

w,,( r, r') = S,,S( r - r') + s,,( r, r') (19)  

with 

s,,(r, r') = (1 - 8,,)(8(r- r',' )8(r ' -r '" '  )> (20) 

where s,, gives the joint probability density of finding two different sites a and 7) at 
positions r and r', respectively. The factor ( 1  - Sa,,) ensures that a and 7) refer to 
different sites. 

From (16)-( 18) we get 

Pshos(r'')r r )  = c 5 d r ' l  dr",y,,(r, r')t,,(r', r")w,,(r'OJ, r"). (21)  
, = I  

This is analogous to the equation obtained from the so-called R I S M  (reference interac- 
tion site model) theory [SI. ,yss is obtained from either an experiment or a computer 
simulation on the pure solvent. With the known values of x,,, (21)  is solved for c,, 
with an appropriate closure. Motivated by the hypernetted chain ( H N C )  theory of 
simple fluids [7], one can use the following closure: 

(22)  
This theory for intermolecular pair correlation, usually referred to as the extended 
REM equation, is known to be accurate for simple models of polyatomic systems [9]. 
The solutions c,, and h,, are non-linear functionals of the polymer structure, w,,(r). 

Equations (14) bears a striking relationship to the potential surface predicted from 
a Gaussian field theory [lo]. We consider a model in which the solvent density fields, 
ps(r), obey Gaussian statistics with variance ,yss (r, r') and a site is coupled to the 
solvent with the potential energy 

1 + L ( r )  = exp[-u,,(r)+ M r ) -  c,Ar)I. 

-kT 5 5 drp,(r)E,s(r'a') r) .  
* = I  
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On performing the functional integration over density fields, one finds the pair correla- 
tion in this model is given by (21)  and the potential surface is given very nearly by 
(14). The difference resides with the first term. This term in the Gaussian field theory 
is 

P f  

In another derivation of - P A p { r ( o ) } ,  Singer and Chandler [ 1 1 1  started with a 'charging' 
formula and  relations (21)  and (22) .  For the first term they found 

This owes its form to the closure relation (22) .  Both (23)  and (24)  can be regarded 
as approximate forms of the first term of (14). 

To calculate the properties of the polymer we concentrate on the partition function 
of the polymer in the solvent, which in the continuum limit P + is given by 

Z =  Dr(t)s'"[r(t)]y[r(t)]. (25)  

In this expression the weighting of configurations is determined by the solvent-induced 
interactions PAP[  r( t)], as well as the intrapolymer energetics contained in s'''[r( t)] 
which in turn is given in [12] as 

where the integration is over all continuous curves r ( t ) ,  0 s  t s L, such that r ( 0 )  = 0, 
a is the size of the statistical unit and L is the total contour length along the chain, 
L =  Pa. A constrained path r ( t )  corresponds to a constrained conformation {r'"} of 
the polymer. In (25), y [  r (  t)] = limp,, y { r ' " ' }  is the Boltzmann factor for the solvent 
contribution to the potential of mean force for the P interaction sites on the polymer, 
i.e. 

In y { r ' " ' }  = - p A p { d a ' } .  (27)  

The pair correlation function for the polymer is determined by a functional integral 
similar to (25) but with two points on the path constrained to a fixed separation, in 

w ( r  - r')  = ( 6 [ r  - r ' -  r( t ) +  r (  t')]) 

= D r ( t ) 6 [ r - r ' - r ( t ) + r ( t ' ) ] s ' 0 ' [ r ( t ) ] y [ r ( t ) ] .  (28)  

Since the solvent-generated interactions and the 'long-range' intrapolymer interac- 
tions are in general not harmonic, the evaluation of the functional integrals of (26) 
and (28) is not easy. The competition between 4 and U will, however, lead to many 
interesting features including 0 point. The solvent-induced interaction U may favour 
a collapsed polymer structure. The physical reason for this behaviour is that, by making 
the polymer smaller, there is a smaller solvent free energy change required to accommo- 
date the polymer. The compression of the polymer will, however, compete with the 
entropic preference of an  extended structure. These effects may be sensitive to the 
details of the interactions present in the system. 



3954 Y Singh 

References 

[ l ]  Franks F and England D 1975 C R C  Crit. Rev. Biochem. 3 165 
[2] Drew H, Takano T, Tanaka S, Itakura K and Dikerson R E 1980 Nature 286 567 
[3] Tanaka F 1983 J.  Chem. Phys. 78 2788 
[4] Gray C G and Gubbins K E 1984 Theory Of Molecular fluids (Oxford: Clarendon) 
[5] Pangali C, Rao M and Berne B J 1979 J.  Chem. Phys. 71 2975 
[6] de Gennes P G 1976 J.  Physique 37 59 

Brochard F and de Gennes P G 1980 Ferroelectrics 30 33 
[7] Hansen J P and McDonald 1 R 1976 Theory ofSimple fluids (New York: Academic) ch 5 
[8] Percus J K 1962 Phys. Rev. Left .  8 462 
[9] Hirata F, Rossky P J and Pettitt M 1983 J.  Chem. Phys. 78 4135 

[ lo]  Chandler D, Singh Y and Richardson D M 1984 J.  Chem. Phys. 81 1975 
1111 Singer S J and Chandler D 1985 Mol. Phys. 55 621 
[12] Freed K 1972 Adu. Chem. Phys. 22 1 


